All questions are for separate science students only

٦	1	1	
d		ı	ì
	J	ľ	21

This question is about displacement reactions.

Iron is extracted from iron oxide by a displacement reaction with carbon.

The equation for the reaction is:

$$Fe_2O_3 + 3 C \rightarrow 2 Fe + 3 CO$$

	(0)	\ \A/bicb	substance	in ·	tha a	auation	ic	roduco	40
((a)) VVIIICII	substance	111	me ed	qualion	15	reduce	u:

Give one reason for your answer.

Answer in terms of oxygen.

Substance reduced _____

Reason _____

(b) Which expression shows how to calculate the mass of carbon needed to produce 1 mole of iron from iron oxide?

Relative atomic mass (A_r) : C = 12

Tick (\checkmark) one box. (HT only)

$$\frac{3}{2}$$
 × 12 g

(1)

(2)

A student investigated displacement reactions of four different metals represented by A, B, C and D.

A, B, C and D are **not** the actual chemical symbols for the metals.

The student:

- added each metal to aqueous solutions of the metal nitrates
- observed whether a reaction took place.

The table below shows information about three of the reaction mixtures.

Reaction	Metal	Metal nitrate solution	Equation
1	Α	B NO ₃	A + 2 B NO ₃ \rightarrow 2 B + A (NO ₃) ₂
2	С	A (NO ₃) ₂	$2C + 3A(NO_3)_2 \rightarrow 3A + 2C(NO_3)_3$
3	С	D (NO ₃) ₂	no reaction

The ionic equation for **Reaction 1** is: (c)

$$\mathbf{A} + 2 \mathbf{B}^{\scriptscriptstyle +} \rightarrow 2 \mathbf{B} + \mathbf{A}^{\scriptscriptstyle 2+}$$

Why is this a redox reaction? (HT only)

	Tick (✓) one box.		
	A gains electrons and B ⁺ loses electrons.		
	A loses electrons and B ⁺ gains electrons.		
	Both A and B ⁺ gain electrons.		
	Both A and B ⁺ lose electrons.		
			(1)
(d)	Which of the four metals has the greatest to	endency to form positive ions?	
	Use the table above.		
	Tick (✓) one box.		

(1)

The nitrate ion has the formula NO ₃ -
Which of the four metals could be aluminium?
Explain your answer.
Use the table above.
Metal
Explanation
Metal X is extracted from an oxide of metal X by reaction with hydrogen.
The equation for the reaction is:
$XO_3 + 3 H_2 \rightarrow X + 3 H_2O$
The percentage atom economy for obtaining metal X by this method is 77.3%.
Calculate the relative atomic mass (Ar) of metal X. (chemistry only)
Relative atomic masses (A_r): H = 1 O = 16
Relative atomic masses (<i>A</i> _r): H = 1 O = 16
Relative atomic masses (A _r): H = 1 O = 16
Relative atomic masses (A _r): H = 1 O = 16
Relative atomic masses (A _r): H = 1 O = 16
Relative atomic masses (A _r): H = 1 O = 16
Relative atomic masses (A _r): H = 1 O = 16
Relative atomic masses (A _r): H = 1 O = 16
Relative atomic masses (A _r): H = 1 O = 16